Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment
نویسندگان
چکیده
We have collected 500 stream waters and associated bed-load sediments over an 400 km region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Feand Mn-oxyhydroxide phases. We are thus able to partition the REE into ‘‘dissolved” (<0.45 lm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/ Ce*]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu*]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/ Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce*]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu*]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced. The partial extraction recovered, on average 20% of the Fe in the total sediment, 80% of the Mn, and 21–29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly d-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Rare earth element deposition in pelagic sediment at the CenomanianTuronian Boundary, Exmouth Plateau
ODP Site 762 (eastern Indian Ocean) includes a section of sediment that spans the Cenomanian-Turonian Boundary (CTB) and was deposited along a continental margin during a period of widespread oceanic 09. deficiency. The rare earth element (REE) content of preand post-boundary sediment is similar to that of present-day continental slope material deposited in well-oxygenated seawater, whereas the...
متن کاملLigand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extractio...
متن کاملRare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland
A detailed hydrogeochemical study was performed in the Wiśniówka mining area (south-central Poland). This covered three acid pit bodies, historic tailings acid ponds, acid pools, and additionally two neighboring rivers. All these acid mine drainage (AMD) waters are characterized by the pH in the range of 1.7 (pools) to 3.5 (tailings ponds). The most interesting is the Podwiśniówka acid pit lake...
متن کاملMicrobially mediated formation of birnessite - type manganese oxides and subsequent incorporation of rare earth elements , Ytterby mine , Sweden
Microbes exert extensive control on redox element cycles. They participate directly or indirectly in the concentration and fractionation of elements by influencing the partitioning between soluble and insoluble species. Putative microbially mediated manganese (Mn) oxides of the birnessite-type, enriched in rare earth elements (REE) + yttrium (Y) were recently found in the Ytterby mine, Sweden. ...
متن کاملRare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition
The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today’s. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008